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Abstract. A y? test is proposed that provides a means
of discriminating between different Markov models
used for the description of a measured (patch clamp)
time series. It is based on a test statistic constructed
from the measured and the predicted number of
transitions between the current levels. With a certain
probability, this test statistic is below a threshold if
the model with a reduced number of degrees of
freedom is compatible with the data. A second cri-
terion is provided by the dependence of the test sta-
tistic on the number of data points. For data
generated by the alternative model it increases lin-
early. The applicability of this test for verifying and
rejecting models is illustrated by means of time series
generated by two distinct channels with different
conductances and by time series generated by one
channel with two conductance levels. For noisy data,
a noise correction is proposed, which eliminates
noise-induced false jumps that would interfere with
the test. It is shown that the test can also be extended
to aggregated Markov models.
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Introduction

Ion channels in biological membranes switch sponta-
neously or under the influence of drugs or messengers
between conductive and non-conductive states. The
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Abbreviations: SLM, sublevel model; 2CM, two-channel model; C,
C’, closed state; O, open state; S, sublevel state; SNR, signal-to-
noise ratio.

kinetics of this so-called gating can be described by
Markov models (Korn & Horn, 1988; Colquhoun &
Hawkes, 1995). The adequate Markov model is not a
priori known, and it is a serious challenge to reveal
this model from the measured time series of the
channel current, especially if more than one channel
contributes to that current.

Model identification is done on different levels of
complexity. The determination of the number of
channels in a measured record can be tested by using
a simple binomial distribution (Neher, Sakmann &
Steinbach, 1978; Horn, 1991; Draber, Schultze &
Hansen, 1993). For a comparison of several different
methods see Horn (1991). Rydén (1995) suggested
maximum split data estimates for the determination
of the number of states in a hidden Markov model
(Remark: We do not include aggregated Markov
models in the class of hidden Markov models in order
to distinguish between the two models). Empirical
methods for model identification based on the Akaike
information criterion and the Schwarz criterion are
given by Ball & Sansom (1989). Horn & Vandenberg
(1984), Blatz & Magleby (1986) and Horn (1987)
considered tests for model discrimination on the basis
of dwell times (Akaike information criterion and
likelihood ratio test). A very time-consuming and
complex approach for model discrimination is the
Markov chain Monte Carlo method (Ball et al., 1999;
Hodgson & Green, 1999; Schouten, 2000; De Gunst,
Kiinsch & Schouten, 2000). Less complicated is the 2-
dimensional dwell-time analysis (Blatz & Magleby,
1989; Song & Magleby, 1992; Colquhoun, Hawkes &
Srodzinski, 1996). However, this latter approach re-
quires a large amount of data. The likelihood ratio
test for aggregated Markov models was applied by
Horn & Lange (1983) and by Wagner & Timmer
(2000). Fredkin & Rice (1992a) proposed a likelihood
ratio test for hidden Markov models. Sansom et al.
(1989) used the empirical Schwarz criterion for the
discrimination of Markov, fractal, diffusion and re-
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lated models for the channel gating mechanism. (The
Markov model performed best.)

However, often the experimenter is interested in a
simple, but mathematically solid test for accepting or
rejecting suggested models. In the case of indepen-
dent, identically distributed (iid) random variables
and in the case of Markov processes, there exist two
standard test procedures: the likelihood ratio test
(LRT) and the y? test (besides other, e.g., the Wald
test). Both tests have been applied for model identi-
fication in Markov processes (likelihood ratio test:
evolution: Carroll & Corneli, 1995; Yang & Roberts,
1995; clinical trials: Patel & Khatri, 1981; sequential
modulation: Yu & Kuo, 1996; x2 test: weather data:
Sundararaj & Ramachandra, 1975; Singh & Sutra-
dhar, 1989; sedimentary sequences: Sharp & Mark-
ham, 2000; both: language recognition and
cryptography: Ganesan & Sherman, 1993, 1994).
These two tests are asymptotically equivalent (for iid
random variables see, ¢.g., Lehmann, 1986; Stuart &
Ord, 1991; for Markov chains see Billingsley, 1961;
Basawa & Rao, 1980). Hence for a sufficiently large
number of observation points there is no difference in
the behavior of the tests. For a finite number of data
points the tests differ. For a comparison see, e.g.,
Singh & Sutradhar, 1989; Ganesan & Sherman, 1994
and the discussion and references in Stuart & Ord,
1991. As expected, each test has its advantages
depending in a complicated way on the data, but on
the whole there seems to be very little difference in
most situations.

Here a y° test is provided for models with a re-
duced number of degrees of freedom, i.e., a reduced
number of independent variables sufficient to describe
the observed kinetics (with respect to a general
model). Because of the similarity of the tests even for
a finite number of observations, it is to be expected
that the results for the y> test for Markov models
should apply to the likelihood-ratio test for Markov
models.

There is a considerable number of systems to
which the % test can be applied. An important class
consists of ensembles of channels with two different
current levels (Patlak, 1988; Schild, Ravindran &
Moczydlowski, 1991; Tyerman, Terry & Findley,
1992; Draber & Schultze, 1994; Root & MacKinnon,
1994). Here, two different scenarios may apply: Two
independent channels with different conductivities
each (two-channel model, 2CM), or one channel with
two different conductive states (sublevel model,
SLM). Draber and Schultze (1994) suggested an
empirical method to distinguish between 2CM and
SLM. Below, a mathematical test is presented, which
can reject or admit the 2CM by virtue of its reduced
number of degrees of freedom. This y> test is espe-
cially simple to apply because only the number of
transitions of the time series is needed. No high
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computational power as in the case of aggregated or
especially hidden Markov models is required.

The application of the proposed y” test is dem-
onstrated by simulations, which particularly examine
the admissibility of the theoretical asymptotic state-
ments. A simple 2CM compared with an SLM dem-
onstrates the behaviour of the test statistic and its
ability to distinguish between similar models. Then,
the application of the test is extended to multi-
channel records and to noisy data (including a
method to correct the effect of noise in high-noise
records). Even though the test is based on the as-
sumption of Markov models, simulations show that it
can also be used for aggregated Markov models.

Theory

The y? test for Markov chains is a means of testing
whether a set of experimental data can be explained by
a Markov model which has a reduced number of de-
grees of freedom compared to the general model.
Originally, a y” test applies to independent, identically
distributed random variables. However, it has been
shown that this test can also be extended to Markov
chains with a finite number of states although the
measured data are not independent and not identi-
cally distributed (Billingsley, 1961; Basawa & Rao,
1980; Caliebe, 1996).

We consider a time-homogeneous Markov chain
of m states, for simplicity numbered from 1 to m. Let
P = (pij)ijeq1,...my be the related transition matrix
and 7n the initial distribution. For a temporal
sequence x = (xo, X1, ..., X,) of n + 1 data points the
likelihood (i.e., probability) of x is given by

n m

L(x, P) = n(x0) [ [ s 1w = n(x0) ] 21

k=1 ij=1

(la,b)

In the medium term, the product is taken over the
probabilities py, , ., that the time series takes the
value x; at sampling point k given the value x;_; at
sampling point k — 1. In the last term, the product is
taken over the probabilities p;; of transitions from
state i to state j of the Markov chain by combining
equal factors, n; = n;; (x) is the number of transitions
from state i to state j observed in the data x. In Eq. 15
the information contained in 2-D dwell-time histo-
grams (Song & Magleby, 1992) is lost. This is relevant
for aggregated Markov models, but not for Markov
models that are considered in the following test.
Remark: Consider a Markov process Y in con-
tinuous time (e.g., the standard model for an ion
channel). Such a process is characterized by the initial
distribution n and the matrix of rate constants K =
(kipij e (1...m}- If we observe Y at times n - At (At is
the fixed sampling interval) then the process X,: =
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Y, - ac1s a discrete-time Markov chain with transition
matrix (Bharucha-Reid, 1960)

8}

= an! (KAb)". (2)

n=0

P = exp(KAt)

For ion-channel data it is a common procedure to
regard the sampled observations as a time-discrete
Markov chain, thereby approximating the underlying
continuous process (Albertsen & Hansen, 1994;
Becker et al., 1994; Colquhoun & Hawkes, 1995;
Fredkin & Rice, 19924, b, 2001).

The initial distribution 7 in Eq. 1 is fixed and is
not considered as a variable for the statistical model.
The probability distribution of the Markov chain is
completely determined by the transition matrix P.
This stochastic matrix P @i; 20, % p; = 1is
described by at most m* — m parameters Our aim is
to decide whether the transition matrix P belongs to a
certain subset H of transition matrices. H is called the
hypothesis, and HS, the set of all transition matrices
not belonging to H, is called the alternative. We are
interested in subsets H which can be parameterized
by fewer parameters than m* — m, i.e.,

H={P=P(}) € R"™" : ¢ c D}

with® C R*,s < m*—m: Every transition matrix P € H
can be identified as a vector of parameters ¢ € ®. The
actual function P(¢) = (p; ($))ije {1...m} is determined
by the hypothesis (i.e., the model to be tested).

In the case of a patch-clamp record with two
different conductivities, the hypothesis H is the model
of two independent channels or, more precisely, all
corresponding transition matrices P of the macro-
channel (i.e., the Markov model consisting of all
states of the ensemble of the two channels (Colqu-
houn & Hawkes, 1977, 1990; Blunck et al., 1998)).
The p;{(¢) are the transition probabilities of the
macro-channel, whereas the components of ¢, ¢, [ =
1, 2, ..., s, are the transition probabilities of the in-
dividual channels.

¢, the value of ¢ € ® such that the data x has the
highest probability, is determined by

¢ = $(x) = argmax L(x, P(¢)). 3)

Pped
To simplify notation we assume that ¢ is unique, if

existent. Calculating qﬁ is usually done by solving the
likelihood equations

oL

874)1()67 P(¢)) =0,

1=1,2,...,s (4)

in ¢. This solution is in many cases unique and
equal to ¢. For the following we assume that a so-
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lution of Eq. 4, if existent, is unique and equals qg
The (;’), are used for the numerical calculatlon of
p,},(d)) which are employed in the suggested x> test for
H: Tt is based on the test statistic

) " (g — nipi ()
Ty = Tm = Capi($)
I h (x) Uz::l n,'pi,/((b)

Ppij($)>0

(5)

with n; = m;(x) = 377" | ny being the number of data
points at which state 7 is measured. (Recall that n;; is
the number of transitions from state i to state j. Note
that transitions from state i to i, n;, are included in
the sum for calculating n;. For each n € N we have
the equality n =) 1, n;.) Later on the test statistic
Ty, will be substituted by T = T,, in order to take
into account the supposed underlying continuous
Markov process in patch-clamp experiments.

In Eq. 5, a comparison is made between the ex-
perimental parameters n; and the estimated p; J(¢)
At a first glance, this seems to be a circulus vitiosus,
since also the p;;(¢) have to be calculated from the
time series via the measured n; However, the as-
sumed model enters the calculation of the p;;(¢) via
the relationship between the (macro-channel) proba-
bilities p; ; and the (single-channel) parameters ¢; (see
the examples below). When these relationships are
introduced into Eq. 1b, and the experimental n;; are
used as exponentials, then the determination of the
maximum-likelihood estimator d) leads to a rela-
tionship between the p;; and the n; that is model-
dependent. Two concrete examples for the evaluation
of T = T,, are given below.

We denote by x> a y? distribution with r degrees
of freedom. The main theorem regarding T, of Eq. 5
(whose proof is sketched in Appendix 1) is

THEOREM 1.

Assume the above model and additionally certain
conditions on the hypothesis H as specified in Ap-
pendix 1. Further let d (the number of elements of the
m X m transition matrix P(¢), ¢ € ®, which are not
equal to zero) not depend on ¢. Then, for every
Markov chain with transition matrix P = P(¢) € H
which generates the data x

T3 ()50 (6)

withr = d—-m-s.

From Theorem 1 we obtain the following y° test
for hypothesis H with fixed error probability o: This
test rejects the hypothesis if 7, (x) > ¢ with ¢ the o-
quantile (i.e., P(y? > ¢q) = o). Otherwise, i.e., Ty (x) <
¢, the test accepts the hypothesis. Under every P € H,
the probability of rejecting H is asymptotically o.
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Substitution of Ty, by T = T,

Instead of T,, we use a test statistic that excludes
rare transitions (frequency less than ¢ € R+ fixed)

n s (H)]P
() = S L = mipey (D)
= nmpi(9)

max(n[jll1[[7;_/(<})))>c. (7)

T:=T,= TZP

x 1

The function 1 (nympis(B)>e is 1 if max(ng,np;;
(¢)) >cand O other\/)vls'e/ sing experience with the
x> test for independent, identically distributed ran-
dom variables it is reasonable to set ¢ = 1 (Sachs,
1997). We use ¢ = 1, throughout the paper.

As reference for our test we do not apply a x>
distribution with r degrees of freedom but a y* dis-
tribution with

Fap = #{(la]) € {1,,]’7’!}

x{l,...,m}: max(nij-,niij((ES))c >}
—m—s (8)

degrees of freedom (with the number of elements of a
set S denoted by #S). The new test with the new test
statistic 7" and the new reference distribution will be
called a y2 test. Notice that r,, is a random variable,

, it depends on the measured data sequence. The
new test statistic is asymptotically equivalent to the

old one of Eq. 5 since n,p,,(qg) — oo for n — oo. If At

depends on 7 (e.g., I‘”AI — 0, for M € N fixed, K =
(kij)ije (1,..my Matrix of rate constants) it is possible to
get a different asymptotic number of degrees of free-
dom (but also fixed and not random). (This result is
not yet theoretically proved. However, the proof is
assumed to be on the lines of the proof of Theorem 1.)

The test statistic 7 is more adequate for finite
observation times than 7,,: The theoretical number of
transitions from i to j under H is approximately (for
large n) n;p;j(¢), close to the observed number n;. If
both  values are sufficiently small, ie.,
max (n;;, n;p;;(¢)) < c, the related pair (7, /) is excluded
from the summation. This is sensible since the ap-
nj— ”'1’1/
\ hip; ,((b)
distribution (which leads to the x distribution for
T,;) is only valid if the values n;p; _](qS) and n; are not
too small. We make amends for the exclusion of
certain pairs (7, j) by reducing the number of degrees
of freedom by the same amount.

This substituting procedure is especially impor-
tant if p;;(¢) is very small such that n;p;;j(¢) ~ 0.
Then under H in most cases n; will be zero which
results in

[y — ”iPi,{(&)lz
”ipij(¢)

proximation of the expression by a normal

= nipi,/(@ ~
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This term of the sum in Eq. 7 is therefore approxi-
mately zero and contributes no degree of freedom for
the > distribution. Therefore the theoretical value for
the number of degrees of freedom has to be reduced
as done in the y2 test. If under the condition
npi;(¢) ~ 0 the unlikely case n; > 0 occurs with n;; <
¢ then

lnzji—’71‘191‘,1'(<l>)l2,ﬁ3 ”12/ '
ﬂiPi,/(‘l’) niPi,/‘(¢)

This very high value results in a very large 7, hence
resulting in the wrong decision of the test. It is ex-
cluded in the calculation of 7.

Remark: The LRT statistic corresponding to the
? statistic T}, is

m

n;i
TLRT = n,:,—log 4 el
i,jgl lplj(d))

Pif($)>0

Therefore, for small values of n;p; J(qg) the same
problems arise for 77 g7 as for T, since the values in
the denominator become very small.

In our models for ion channels we use a discrete-
time Markov chain. Therefore it is possible that
double (triple, ...) jumps occur between time n and
n + 1. Such simultaneously multiple jumps are im-
possible in the continuous-time model. The changed
test statistic takes care of this problem: If the rate
constants in the 2CM are small, multiple jumps are
extremely improbable and n;p; ,(d)) ~ 0. ThlS is ex-
actly the case considered above: If the old ¥ test were
used, the number r of degrees of freedom of the ref-
erence distribution would not be correct. If the rate
constants in the 2CM are large, multiple jumps are
possible and we get Ty, = T,, = T and r=r,,. Itis
possible to treat the cases of multiple jumps in a
different kind of way by letting the sampling interval
At depend on n as indicated above (below Eq. 8).
Then an approximation of P by the first M terms of
the Taylor expansion in Eq. 2 is possible.

For the models discussed below, the above the-
orem leads to the following strategy explained for a
patch-clamp record with two conductivity levels. It
has to be tested whether this record is caused by two
channels or by one channel with a substate. The p; ;
are the transition probabilities of the macro-channel,
that is a putative channel comprising all states of the
assumed scenarios. On the basis of the hypothesis of
two independent channels, the p;; can be calculated
from the ¢,, the transition probabilities of the indi-
vidual channels (see below, or Blunck et al., 1998).
The n;; and the n; of Eqs. 5 and 7 are obtained from
the measured time series by a jump detector, and the
i, j(¢>) are determined as described above by means of
Eqgs. 16 and 3. After computing 7, a Xap test can be
performed.
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Theorem 1 states the behaviour of the test sta-
tistic T}, in the case that the underlying but unknown
transition matrix P is in H. It does not provide any
statement if P is in the alternative HS. Especially, no
probability is given for the truth of H (or H) if T},
(x) £ ¢q. The behaviour of T under the alternative is
described in the next theorem (the proof is straight-
forward, see Caliebe, 1996):

THEOREM 2.

We assume the conditions of Theorem 1. Let P € HE.
Let x be a constant vector of R® such that

&Si’nk- (9)

Then there exists a constant y € R such that

n —n?- (10)
This means that if the alternative (P € HC) is true,
and if Eq. 9 is satisfied, the test statistic 7 shows an
asymptotic linear increase with the number of data
points. T exceeds every given boundary for suffi-
ciently large n. Our proposed xgp test will then reject
the hypothesis.

Basic MODELS FOR SIMULATIONS

Simple Two-Channel Model

C=0
C=s (11)

In the simple two-channel model (2CM) of Eq. 11,
independence of the channels is always assumed (Yeo
et al., 1989; Dabrowski, McDonald & Rdésler, 1990;
Dabrowski & McDonald, 1992). It is assumed that
the current of state O is different from the current of
state S. The resulting macro-model can be viewed as a
Markov chain with four states, which will be num-
bered from one to four as shown in Table 1. The free
parameters ¢, are the transition probabilities of the
two single channels:

¢1 =pco ¢ =poc ¢3=pcs ¢4 =psc (12

with0 < ¢, < 1,1=1,2,3,4.

Recall that Pcc = 1 - Pc,o, Po,o = 1 - Po,c» etc..
Therefore, the transition probabilities pcc, po.os
pc.c» and pg s are not free parameters.

For the assumed model the theoretical transition
matrix of the macro-channel P(¢) can then be cal-
culated in terms of the vector ¢ = (¢1, P2, @3, ¢ps) of
single-channel parameters (by virtue of the
independence of the channels):

pri(@) =pccpoc = (1—¢)(1 — ¢3)
P12(d) = pecpos = (1 — ¢y) s, etc. (13)

29

Table 1. Assignment of the biological states of two superimposed
single channels of Eq. 11 to the macrochannel states of the resulting
Markov chain

Biological State Mathematical state

(C.C) 1
(C.9) 2
0.C) 3
(0.9) 4

Here letters as indices denote the single-channel
states and numbers as indices the states of the macro-
channel. To calculate the test statistic 7 of Eq. 7 one
has to proceed as follows: The maximum-likelihood
estimators ¢, are obtained from Eq. 4 with L from
Eq. 16 and the p;; taken from Eq. 13. Thus

9 1 :
7o) g L pas)™ =0 (14)
ij=1

with / = 1, 2, 3, 4 results in

4 Ny + nig +n3y + N3

Pco=¢; = n + m
Poc = (2)2 _ M1+ mo3 + N4y A na3 7
' ny + ng
hors = (353 _m3 + nyg +ny3 + 'l247
' ny +np
. 5 n31 + N3y + n4p + N4
Psc = ¢4 = 73+ 1 ) (15)

Introducing the n;; from the data and the (13, of Eq. 15
into Eq. 13 and Eq. 7 yields the numerical value of 7,
and a xﬁp test can be performed.

Two-Channel Model with Double Number of Channels
The following model

2xC=0
2xC' =S8 (16)

results in a Markov chain (macro-channel) of nine
states as shown in Table 2. The parameter vector ¢ is
the same as in the simple 2CM above (Eq. 12). Be-
cause of the double number of channels, each element
of the transition matrix of the macro-channel is now
a product of four factors:

p1ﬁ1(¢) = Pc,cPc,cPc.cpPc,c = (1- ¢1)2(1 - ¢3)2
171,2((15) = 2pc.cpcopo,cPc,c
=2(1 =) (1 —¢3)2»€t0- (17)

(As before in Eq. 13, indices with letters denote the
single-channel states and indices with numbers the
states of the macro-channel.)

Substituting these expressions in Eq. 15 and in
the maximume-likelihood equations, Eq. 4 results in a
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Table 2. Assignment of the biological states of four superimposed
single channels of Eq. 16 to the macrochannel states of the resulting
Markov chain

Biological State Mathematical state

(C.C.C, C) 1
(C,0.C.C)/(0,C.C.C) 2
(C.C,S.C)/(C.C.C’.S) 3
(C,0.C".8)/(0,C.C".9)/(C,0.8.C)/ 4
(0,C.S, C)

(0,0.C.C) 5
(C.C,S.9) 6
(0,0,C".9)/(0,0.5.C) 7
(C,0.8,8)/(0,C,8.5) 8
(0,0.8.9) 9

polynomial in ¢, (resp. ¢, ¢ and ¢,) of order five
with the coefficients being determined by the mea-
sured n; . These polynomials have to be solved
numerically in order to get ¢ for Eq. 7. In most cases,
however, when the rate constants (and therefore the
transition probabilities) are small with respect to the
sampling frequency of the data, an approximation is
possible: Quadratic expressions in ¢, can be ignored
in comparison with linear terms in ¢; provided that
the respective coefficients are of the same magnitude.
This yields much simpler expressions for the ¢,
which are now the solutions of a quadratic equation
(see Appendix 2). By means of Eq. 7 the assumed
model can be tested.

Simulations

In all simulations (based on a program of Riessner,
1998; Blunck et al., 1998), a sampling rate of 200
msec™' was used.

VALIDITY OF THE ASYMPTOTIC STATEMENTS

We considered the simple 2CM of Eq. 11 as our hy-
pothesis. The appropriate macro-channel model is
shown above (Table 1).

Behavior of the Test under the Hypothesis

Under the hypothesis (i.e., the assumed model is
correct) the test value T is asymptotically x> distrib-
uted according to Theorem 1. However, this distri-
bution is only guaranteed for a large number n of
observations, i.e., for a sufficiently high number of
transitions in a measured time series. In a typical
experiment, the number of data points is about 10
In the following simulations it was tested whether the
asymptotic x> distribution is already obtained by this
number. This would ensure that the test can be ap-
plied to such records. Note that because of only fi-
nitely many observations, the number of degrees of
freedom of the reference y* distribution of the Xﬁp
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Fig. 1. Distribution of simulated values of the test statistic of the
model of Eq. 18 obtained from 700 simulations with 10° data
points each tested with 2CM hypothesis. The smooth line shows a
xﬁ distribution.

test, r,,, may differ from r, the number of degrees of
freedom of the reference > distribution of the stan-
dard ¥ test.

For our simulations we used a 2CM with rate
constants as follows:

IOEC\’"

55;*‘
0= (18)

60sec!

The appropriate macro-channel model is shown
above (Table 1). In all our simulations we had
max(ny, npij(¢)) < ¢ =1 for all pairs (i, /) that cor-
respond to double jumps (the pairs (1,4), (2,3), (3,2)
and (4,1)). This is due to the comparatively small rate
constants of the model. Double jumps are highly

improbable in this setting. Therefore

rop = #{(0,j) € {1,...,m}

x {1,...,m} : max(ny, np;;(¢)) > ¢}
—m—s=12—4—-4=4 (19)

for all measured observation sequences.

Fig. 1 shows the distribution of the test statistic 7'
obtained from 700 simulations. The simulated 7'
values for 10° data points (individual bars in Fig. 1)
approximate the theoretical y* distribution (smooth
line in Fig. 1 — recall that the maximum of a y°
distribution of / degrees of freedom is at the abscissa
value [ — 2).

The difference between r and r,, resulted from
the very small probability of double jumps. If the
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corresponding values max(n;, np;j(¢)) exceed the
limit ¢, then r,, will take the full value m* —m—s.
The influence of double jumps on the number of
degrees of freedom of the y* distribution is illustrated
by simulations with rate constants that are a thou-
sand times faster than those used in Eq. 18. Now,
double jumps are possible and max(n;, n;p;(¢)) > ¢
for the corresponding pairs. We obtain

Fgp=m*—m—s=16—4—4=38. (20)

Fig. 2 shows that the experimental distribution can be
fitted by the theoretical > distribution. Only 100
simulations were necessary for approximating the
theoretical curve because the higher rate constants
resulted in more jumps and thus in a lower scatter of
the value of the test statistic of the individual records.

Remark: The 2CM of Eq. 18 should result in the
same y distribution with 8 degrees of freedom if the
number of sampling points is multiplied by a factor
10° (the factor (10°)? results from the fact that the Dij
for double jumps are the product of two single-
channel transition probabilities). Then, the low
probability for double jumps would be compensated
by a very long observation time.

These results show that for a realistic number of
data points (10°) the test can be applied. This is even
true for rate constants as small as those in Eq. 18,
resulting in only a few transitions between different
states.

For the demonstration of the behavior of the test
statistic for fewer data points one can inspect the de-
velopment of the test statistic with the number of data
points in Fig. 3 (data generated by the 2CM). The test
statistic remains always below the threshold. There-
fore, even for a small number of observations (about
10 jumps at 50,000 samples), the test gives the correct
decision: If T'is below the threshold of the th,p test, the
2CM is chosen. If the number of observations was
further reduced such that only about 4 jumps were
recorded, the test statistic nearly always was zero. In
such a case of too few observable events, it makes no
sense to perform a }(2 test because obviously the ap-
proximating > distrigution does not apply.

Behavior of the Test under the Alternative

In the case of the alternative (the 2CM is false, i.e.,
the data is generated by a SLM) there exists no
statement concerning the distribution of the test sta-
tistic. Theorem 2, however, yields an alternative ap-
proach, based on an asymptotic linear increase of T
with the number of data points. The following SLM
was used to investigate whether this linear increase
was found at a realistic number of data points:

20 sec™! 1000 sec™!
=0 =g 21)
400 sec! 1000 sec—!
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Fig. 3. Development of the test statistic with the number of data
points for data generated by the 2CM of Eq. 18 (circles) and by the
SLM of Eq. 21 (squares) tested with 2CM hypothesis. For each
number of data points 5 simulations were made for the 2CM and
for the SLM. Error bars show the standard deviation. The hori-
zontal line gives the threshold for a ;(3[, test of a reliability of 95 % if
the 2CM is rejected.

In Fig. 3 (data generated by the SLM) the postulated
linear increase can be clearly seen even for a low
number of data points. Furthermore, the values of T
are very high and lie several magnitudes above the
threshold: The test gives the correct decision. The
2CM is rejected with a probability of 95 % (even with
higher probability if a different error value had been
chosen resulting in a higher threshold).
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DISTINCTION OF SIMILAR MODELS

Non-equidistant Current Levels

g,;% = S=C=0 (22)
for kC,O» kC,Sa kC’,S small.

In the model of Eq. 22, it is assumed that the
current of the open state O is clearly different from
the current of the open state S.

The special problems of the models of Eq. 22 as
compared to those of Eq. 21 and Eq. 18 are as fol-
lows:

e In the model of Eq. 21, transitions between S and O
(state 2 and state 3 of the Markov chain/macro-
channel in Table 1) can be used to distinguish be-
tween the models: They are frequent in the SLM
due to relatively high rate constants and rare in the
2CM because they have to be created by highly
improbable double jumps. These transitions are
forbidden in the SLM of Eq. 22, and thus their
non-occurrence is a common feature of both
models of Eq. 22, and cannot serve as a means of
distinction between the models.

e In the SLM of Eq. 21 the exclusion of transitions
between C and S as compared to the 2CM is a tool
for distinguishing between the models: However,
in the SLM of Eq. 22 they are allowed as well.

o The state O + S (state 4 of the Markov chain, Table
1) must not occur in the SLM of Eq. 21, and thus
its occurrence in a time series is a strong indication
of the 2CM. This also applies to the models in Eq.
22. However, also this criterion can loose its power
if an unfavorable set of rate constants is given (rate
constants of opening being much smaller than
those of closing), which keep the occurrence of this
state low also in the 2CM.

Thus, a simple criterion for excluding models is
not available in the case of Eq. 22. Therefore, it is
investigated whether the calculation of the test sta-
tistic may be helpful. In this case our hypothesis is the
2CM of Eq. 22. The considerations regarding the
occupation of state O + S draw the attention to the
ratio between opening and closing rate constants. The
influence of this parameter is displayed in Fig. 4. If
the probability for closing is 1000 times higher than
that for opening, the models cannot be distinguished
by means of the test statistic (10° data points): With
respect to the test statistic of the data set generated by
the SLM, a 2CM is also possible. This seems to
originate from the situation discussed above: If data
were generated by a 2CM that has the same rate
constants as the SLM, then the occupation of state
O + S would be so rare that it would not provide a
means of distinguishing the models of Eq. 22. If the
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Fig. 4. Development of the test statistic with increasing ratio be-
tween opening and closing rate constants for data generated by the
2CM (circles) and by the SLM (squares) of Eq. 22 tested with the
2CM hypothesis. For each ratio 3 simulations of 10® data points
were made for the 2CM and for the SLM. Error bars show the
standard deviation. The horizontal line gives the threshold for a Xfm
test of a reliability of 95% if the 2CM is rejected.

values of the rate constants become more similar, the
test of data generated by the SLM of Eq. 22 rejects
the 2CM. This shows that the test is relatively sensi-
tive, because the rate constants for closing and
opening may differ by a factor of 100 and the test is
still able to reject the 2CM if the SLM holds.

In the case of a patch-clamp record without the
occurrence of the state O + S, the observer is apt to
assume an underlying SLM. It is not clear, however,
whether a 2CM with small open probabilities might
be possible as well. The Xflp test is able to reject the
2CM with a preset probability.

There is another means of distinguishing models
even when the test value T itself fails: the linear in-
crease of 7' with the number of data points. For the
demonstration of this approach, the model of Eq. 22
is used with the following rate-constants

100 sec™!
10000Fsec71 10000 sec™! 10000 sec™!
S = C = 0 (23
, 400 sec™! 400 sec! 100 sec~!
10000 sec!

Fig. 5 shows the result: If the models were simulated
with a small number of data points (less than 500,000),
they cannot be distinguished by means of the test
statistic 7. Only after sufficiently long observation
time, enough information is collected to reject the
2CM for data generated by the SLM (which can
mainly be viewed as the non-occurrence of state O +
S). However, the linear increase of the test statistic for
data generated by the SLM is striking. It occurs even in
the region where the test value alone cannot decide
which model is correct. This linear increase can be used
as a strong indication that the hypothesis is false.
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Fig. 5. Development of the test statistic with the number of data
points for data generated by the 2CM (circles) and by the SLM
(squares) of Eq. 23 tested with 2CM hypothesis. The average ob-
served number of transitions from O to S is near the values of the
test statistic for the SLM. For each number of data points 3 sim-
ulations were made for the 2CM and for the SLM. Error bars show
the standard deviation. The horizontal line gives the threshold for a
;(3[, test of a reliability of 95 % if the 2CM is rejected.

Equidistant Current Levels

2xC=0 < C=0+=20 (24)

In the model of Eq. 24, it is assumed that in the
SLM the current of the open state O is half the cur-
rent of the open state 20. For sake of clarity, double
jumps are ignored so that transitions from C to 20
are impossible. It is no problem, however, to incor-
porate double jumps into the models.

The model of Eq. 24 is of special interest: In the
model of the previous section it was possible to decide
in favour of the 2CM if the state O + S occurs. This
is not a means of distinguishing between the models
here, because the states C, O and 20 may occur in
both SLM and 2CM.

Note that the following two models are kineti-
cally equivalent because of the special choice of the
transition probabilities:

pco 2pccpco  PcoPoo
2xC=0 = C = 0 = 20 (25)
Poc PccPoc 2pocpoo

It is therefore impossible to distinguish between
the two models of Eq. 25 by any test. It is interesting,
however, to test the 2CM against a SLM with rate
constants between O and 20 slightly different from
those of the SLM of Eq. 25. The following 2CM was
investigated:

100 sec™!

2xC = O (26)
70 sec™!

In comparison with the 2CM of Eq. 24 we tested

a SLM with rate constants ko 0 and ko o increased
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Fig. 6. Dependence of the test statistic on the deviation of the rate
constants ko >0 and ko o from those of a SLM, which is equivalent
to the 2CM of Eq. 26 (for the equivalence, see Eq. 25), tested with
2CM hypothesis. For each value of the rate constants 5 simulations
of the SLM were made. Error bars show the standard deviation.
The horizontal line gives the threshold for a Xip test of a reliability
of 95% if the 2CM is rejected.

by 10 to 100% as compared to the SLM of Eq. 25.
The 2CM of Eq. 24 was used as hypothesis. The re-
sult is shown in Fig. 6: If the rate constants are 20%
or more higher than those of the equivalent SLM of
Eq. 25, the test is able to distinguish between the
models by rejecting the 2CM. This shows high sen-
sitivity of the test to compare the models of Eq. 24.

As in the previous section, in the region where
the test statistic 7 itself cannot be used to reject the
SLM, the linear increase of T with the sampling time
in the region of more than 10° observations gives a
strong indication for the SLM. This is displayed in
Fig. 7 for ko 20 and kyo o increased by 40%.

APPLICATION TO Noisy Data

In patch-clamp measurements, the observed data are
usually disturbed by noise, and the original time se-
ries has to be reconstructed by means of a jump de-
tector. Noise and limited temporal resolution can
lead to three kinds of errors introduced by the jump
detector: false alarms, when noise initiates a transi-
tion that does not occur in the original Markov
process, missed events, if the events are too short for
the detector or noise compensates a real transition of
the Markov process, and false jumps, when a false
target is assigned to an actual jump.

Behavior of the Test with Increasing Noise

Time series were generated by the 2CM of Eq. 18 and
superimposed by white noise, whose magnitude, is
described by the signal-to-noise ratio
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Fig. 7. Development of the values of the test statistic with the
number of data points for data generated by the 2CM (circles) and
by the SLM (squares) of Eq. 24 tested with 2CM hypothesis. The
rate constants ko >0 and k,o o of the SLM are increased by 40 % as
compared to the SLM of Eq. 25. For each number of data points 5
simulations were made for the 2CM of Eq. 26 and for the SLM.
Error bars show the standard deviation. The horizontal line gives
the threshold for a Xip test of a reliability of 95 % if the 2CM is
rejected.

SNR = Al (27)
o

with ¢ being the standard deviation of the noise and
AI being the smallest current difference of the in-
vestigated levels. The test was performed with the
hypothesis of a 2CM. Figure 8 shows that up to an
SNR of 2 the test statistic stays below the threshold
such that the test still gives the correct result. With an
SNR of 1.7 or less, the data are so much disturbed
that the test rejects the assumed model. The test can
therefore be applied up to an SNR of two. This is a
reasonable result because most analyzing techniques
cannot be used for an SNR lower than 2.

Noise Correction for a Low SNR

For the understanding of why the test does not give
the correct result when the SNR is too low and for
the construction of a correction algorithm, the two
transition matrices of Table 3 are inspected: The oc-
currence of 7,3 = 2 and n3, = 2 in matrix B (which
gives the wrong test statistic, high noise) attracts
attention. These transitions are zero in matrix 4 (low
noise). The simulation program offers the option to
print out the original transition matrix of the simu-
lated time series of matrix B, which is obtained from
the Markov process before noise is added. In this
matrix, there is 7,3 = 0 and n3, = 0 as in matrix 4.
Obviously, the 2s are false alarms or false jumps
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Fig. 8. Dependence of the test statistic on noise for data generated
by the 2CM of Eq. 18 tested with 2CM hypothesis. o is the stan-
dard deviation of the superimposed white noise given in percent of
the smallest current difference AI of the investigated levels. For
each ¢ value 3 simulations of the 2CM were made. Error bars show
the standard deviation. The horizontal line gives the threshold for a
xﬁp test of a reliability of 95 % if the 2CM is rejected.

Table 3. Typical transition matrices for simulations with low and
high noise. Matrix A was obtained from a simulation with A ¢ OF
10 % and matrix B with A ¢ of 70 %. The standard deviation ¢ of
the white noise is given in percent of the smallest current difference
Al of the investigated levels. The transitions N,3 = 2 and N3, = 2
In matrix B were caused by an error of the jump detector due to
noise

A Sink State

1 2 3 4
1 217591 10 38 0
Source 2 6 376995 0 74
State 3 41 0 142633 6
4 0 71 9 262525
B Sink state
1 2 3 4
1 243414 12 38 0
Source 2 10 397591 2 80
State 3 39 2 114070 6
4 0 78 8 244654

generated in the detector by noise. Further simula-
tions gave the same result: a failure of the test statistic
occurred when n,3 and/or n;3, were not equal to 0. If
these wrong values were removed artificially, the test
resulted in the correct decision.

The crucial role of n»3 and n3, is not unexpected
because such transitions are highly improbable in the
2CM of Eq. 18 since low rate constants practically
exclude double jumps.

If an algorithm were available that yields a pre-
diction of how many of the detected jumps result
from noise then a correction could be applied to get
the transition matrix of the noise-free records. Such
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Table 4. Expected values of false jumps between level 2 and 3 of
the model of Eq. 18 as caused by noise

o [%) SNR g E(n}) a(n})
10 10 0 0 0

20 5 0 107" 1071
35 2.86 0 0.417 0.638
50 2 0 0.605 0.763
60 1.67 ! 0.548 0.730
70 1.43 Z 0.590 0.758
80 1.25 12 0.649 0.796
100 1 Z 0.598 0.765
125 0.8 1 0.569 0.748
150 0.67 b 0.704 0.832

The standard deviation ¢ of the white noise is given in percent of
the smallest current difference Al of the investigated levels. The
SNR is computed according to Eq. 27. n%’“ is obtained from the

average of 3 simulations with superimposed white noise. E(nn) and

a(ny) are the expected value and standard deviation of false jumps

N23 calculated theoretically as described in Appendix 3 (Egs.
A3.8-A3.10).

an algorithm can be created using the special struc-
ture of the Hinkley detector (Schultze & Draber,
1993, employed here for the evaluation of the time
series). The calculations for the model in Eq. 18 by
means of Eqs. A3.8-A3.10 in Appendix 3 lead to the
theoretically expected values of false jumps 7n,3 from
state 2 to 3 (E(n})) and their scatter (¢(n43)) as shown
in Table 4 for different SNRs (calculation relating to
n3, can be done using the same method). The com-
parison with the column n$i" obtained from the av-
erage of three simulations shows that the prediction of
false jumps is correct for an SNR down to 0.8, i.e.,
e [E(nly) — o(nh), E(nh) + o(nh)]. This means
that measured values of n,3, which are in the above
range given by E(nf}) and a(nl}), can be set to zero.

SIMULATIONS FOR MULTIPLE IDENTICAL CHANNELS

The following model was tested to check the appli-
cability of the test for models with multiple identical
channels:

10 sec™!

2x C = 1 (0)

5 sec™

40 sec™! (28)
2x C =
60 sec™!

The appropriate macro-channel was calculated above
(Table 2). The number of states m of the Markov
chain is 9 and the number of free parameter s is 4. For

our simulations we had
#{(i,)) € {1,...,Wi} x{1,...,m}
s max (ny, nipij(¢)) > ¢} = 33

(as in the case of the simple 2CM, transition prob-
abilities that require double jumps are highly im-
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Fig. 9. Distribution of simulated values of the test statistic of the
model of Eq. 28 obtained from 500 simulations with 10° data
points each tested with 2CM hypothesis. The smooth line shows a
13, distribution.

probable). We expect therefore a convergence to a x>
distribution with

Fap=33—9—4=20 (29)

degrees of freedom (Eq. 8) taking the 2CM of Eq. 16
as hypothesis. Fig. 9 shows that this distribution is
correctly approximated by the empirical simulated
distribution of the test statistic. Thus, the test can
also be used for testing complex models such as
models with multiple identical channels.

SIMULATIONS FOR AGGREGATED MARKOV CHAINS

Models of ion channels often comprise multiple open
and closed states. They are not strict Markov models,
but so-called aggregated Markov models because
each observed current level cannot be assigned to a
single state of the model, as is required for Markov
chains. We consider the following example:

100_56\(:’1 lOO(Lwc"
% 20 see! 500 sec!
(30)
40 E\c"
;=
60 sec™!

If only the number of transitions in long time
series is observed, and if ergodicity is assumed then
the number of transitions of channels from state O to
C; and vice versa can be considered under steady-
state conditions. This implies that in the rate equation
of Eq. 30

do

O _x
m c,,0Ci

—kocO (31)
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Fig. 10. Distribution of simulated values of the test statistic of the
model of Eq. 30 obtained from 700 simulations with 10° data
points each tested with 2CM hypothesis. The smooth line shows a
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(with O and C; the concentrations of state O and Cj,
respectively) C; can be replaced by its steady-state
concentration C:

ke, c
Ci=—>2>"_ C=1,C 32
! kcl,Cz + kCZA,CI : ( )
leading to
dO k
dar (rjlliyo 1Cr —koc,0 = xcoC —koc,O (33)

with r; being the reserve factor (Hansen, Tittor &
Gradmann, 1983), which merges all “indistinguish-
able” states (C; and C,) into a representative state
(C). It should be mentioned that C; and C, become
distinguishable states when dwell-time histograms are
considered. However, when the transitions 7; in a
long time series are counted, as required by the test,
the temporal information is lost (Eq. 1), C; and C,
become indistinguishable and the premises for using
reserve factors are fulfilled. As a consequence, the
transition rates can be treated on the basis of a
Markov model.

These considerations are illustrated by means of
simulations on the basis of the model of Eq. 30. Fig.
10 shows that the conversion of the aggregated
Markov model to a Markov model by reserve factors
is legitimate as the simulated distribution of 700
values of the test statistic 7 approximates a y> dis-
tribution of 8 degrees of freedom (2CM hypothesis).
The number of 8§ results from the fact that the
magnitude of the rate constants leads to double
jumps.
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Discussion

The simulations above show that the length of the
time series of usual experiments is sufficient to fulfill
the premise of the test, namely, that the test statistic
of Eq. 7 is y>-distributed. It is obvious that in most
cases the test yields a reliable distinction between
models. In the case where the situation is unfavour-
able (not enough data points), the linear increase of
the test statistic (Theorem 2) can be used as an indi-
cation that the data originate from the alternative
model. In most examples, the discrimination of the
models depends on the existence of the O + S state,
which is forbidden in the SLM. In those cases, the test
may be regarded as a tool that provides more com-
fort, but no new insights, as the occurrence of this
state could also be checked by a visual inspection of a
sufficiently long time series. However, the C—O—20
model is an example for a scenario where the visual
inspection would not help. Both models, 2CM and
SLM, would generate 3 levels. The Xﬁ,, test is capable
of revealing the difference in predicted rate constants
for the O—20 transition.

Noise is always a serious problem in the analysis
of patch-clamp data. The correction algorithm de-
rived on the basis of a Hinkley detector (Eqs. A3.8—
A3.10), however, is a means to improve the reliability
of the test also for data heavily corrupted by noise.

Most simulations were done on the basis of the
simple 2CM or SLM of Egs. 18 and 21, respectively,
as the low number of states reduced computer time
for thousands of simulations to a tolerable extent.
Another reason was that Theorems 1 and 2 are de-
rived for Markov models and not for aggregated
Markov models. However, this is not a serious re-
striction. The test statistic is not influenced by the
temporal sequence of the transitions, and the infor-
mation obtained in multi-exponential dwell-time
distribution is lost (Eq. 1b). The theory of reserve
factors (Hansen et al., 1983) implies that states in
reaction kinetic schemes that cannot be revealed in
the actual experiment can be comprised in apparent
states. This theoretical expectation is verified by the
simulations of the model of Eq. 30: The distribution
of the test statistic calculated from Eq. 30 is a x>
distribution as in the case of pure Markov models.
Further, the test is also applicable to multi-channel
records that are presented by macro-models (which
are also aggregated Markov models, as different
states have equal conductances).

The inclusion of the temporal behavior would
utilize more of the information contained in the
measured time series. This could be done if another
approach for a test is applied (likelihood ratio test).
This approach would be based on the calculation of
the likelihood of the time series (Fredkin & Rice,
1992a; Albertsen & Hansen, 1994; Klein, Timmer &
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Honerkamp, 1997), i.e., the likelihood that the ob-
served sequence of dwell-times in the levels of the
records has occurred, calculated on the basis of an
assumed hidden Markov model. Using this likelihood
as a test statistic also leads to a x> distribution (Bic-
kel, Ritov & Rydén, 1998). However, when we tested
this procedure by simulations, there was a practical
problem. The convergence of the fit routines (in our
case a simplex algorithm, Albertsen & Hansen, 1994)
is not reliable enough. Every time series requires
several fits with different starting values and a test
based on the analysis of a time series reconstructed
from the evaluated rate constants. For a complicated
model in the best case, it may take about one day for
a single time series (Farokhi, Keunecke & Hansen,
2000), in the worst case, the routine does not con-
verge at all. The construction of a y> distribution
based on 700 simulations as in Fig. 1 would need a
new generation of computers orders of magnitude
faster than the present ones. Furthermore, the nu-
merical computations were unstable when general
models were fitted due to the large number of free
parameters. This resulted in the paradox that the
general model often seemed to be less probable than a
special submodel.

Appendix 1

SKETCH OF THE PROOF OF THEOREM 1

The first rigorous proof of Theorem 1 was given by Billingsley
(1961). Basawa and Rao (1980) gave a different kind of proof and,
moreover, the theorem was proved self-containedly in Caliebe
(1996).

The main idea of the % test is to compare the hypothesis with the
general model: The maximum-likelihood transition probabilities (of
the model) of the hypothesis are p,-,-(g%), where (2) denotes the maxi-
mum-likelihood estimator of the parameter vector ¢ in the setup of
the hypothesis (Eq. 3). The maximum-likelihood transition proba-
bilities of the general model are n;/n; (Billingsley, 1961; Basawa &
Rao, 1980; Caliebe, 1996). Therefore, the expression n;/n; -p,-,-(g{w) isa
measure for the difference between the hypothesis and the general
model. These differences are summed in the test statistic 77, (Eq. 5):

IO o el F1C)

17] =1 nipi,/'((l))
pij($) >0
o B pdr
= ijz:: 1 7{7’)/@ . (A1.1)
pij(¢) >0

Theorem 1 states that T, converges to a x> distribution under
the hypothesis. This corresponds to the intuition because in this
case the differences between the models are small resulting in a
small value of T,,. These small values fluctuate according to a x>
probability distribution. This distribution evolves because the dif-
ferences are squared and properly normalized (here by p; (&) /ni).

37

Since the proof of Theorem 1 is rather lengthy, only a sketch of
the main arguments is given. For a detailed version see Caliebe
(1996). We impose the following assumptions:

(i) @ is an open interval of R®.
(i) The functions p;;: ® — R, are twice continuously
differentiable for all ij € {1, ..., m}.

(&)

has rank s for
ije{l,...m}

le{1,...,s}

(iii) The m” x s matrix
all ¢ € @.

Let P° = P(¢°) be the transition matrix which generates the
data x with ¢” € ®. Previous to proving the convergence of Ty, it is
necessary to show the existence of the maximum-likelihood esti-
mator <2) Therefore the likelihood equations Eq. 4 are derived and
written in matrix notation. As an important feature, a rest term r
appears. Then a sequence is recursively defined whose limiting
value, if existent, satisfies the likelihood equations and is therefore
the maximum-likelihood estimator. After estimating the value of
the difference of r at two points, it is shown that the above sequence
is a Cauchy sequence and thus converges.

Next the convergence of the maximum-likelihood estimator qAﬁ
to the real parameter value ¢° is proved:

Vi — ) 5Ny (0, F ).

(Here and in the following N.(a, M) is a k-dimensional normal
distribution with mean @ and covariance matrix M. For simplicity
the covariance matrices are not specified in this sketch of the
proof.)

This is done by using a Taylor approximation

(A12)

Vi(d — ¢°) = MX + rest term (A1.3)
where M is a matrix. X is the following vector
X= \/}E(PV—PV)7 (A14)
with

0 0 0 0 0 0
Py = (P1,1>]71,27 Y AT 7]’,41,1717,17_,27 s 7pm,m)
5 nip N2 Nim N1 N2 Nmm
Py=—,—,..., ey s Yy

ny n ni Ny Ny N

being the vectors of the true transition probabilities of P° and of
the maximum-likelihood probabilities in the general model.
It is known that

X4 N,2(0,0). (AL1.5)

By showing that the rest term in Eq. A1.3 vanishes one gets the
desired, asymptotic distribution of Eq. A1.2 by a linear transfor-
mation of X.

After that the vector y is investigated whose components

ny — nipi ()
P[/(‘?’)”i

are the individual (non-squared) terms of the sum of the test sta-
tistic 7',
An evaluation in a Taylor series as in Eq. Al.3 results in

Yij =

3% N,2(0,D). (A1.6)

If a random variable has a k-dimensional normal distribution it
is a well known result that, under certain conditions, the sum of its
squared components has a y? distribution. Therefore
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Tu= >, ¥ (A17)
ij=1
pij(¢) >0

is y* distributed. The number of degrees of freedom of this
distribution can be derived by calculating the eigenvalues of the
covariance matrix D of Eq. Al.6.

Appendix 2

CALCULATION OF ¢ IN THE Two-CHANNEL MODEL
WITH DOUBLE NUMBER OF CHANNELS

The likelihood equations Eq. 4

oL

—(x, P =0,
5 (5 P9)

can be written for a macro-channel with 4 parameters for the first
parameter ¢; (I = 1)

I=1,2,...,s

0 .
87)1};[1(!%1'(45)) i = (A2.1)

Using the p;; of Eq. 17 leads to the same functions of ¢; with
different n;; as exponents in the product of Eq. A2.1. The n; related
to the same basis are combined as follows

Ny = 2ny1 4+ nip + 2n13 + nig + 2nie + nig + nay + 13
+ na6 + 2n31 +n3p + 2033 + n3a + 2n36 + nsg + nag
+ a3 + nag + 2n61 + ne2 + 2163 + nea + 2166 + Nes
—+ ng1 + ng3 + nge
Ny = nip + nig + 2mis + 2m7 + ms + 2ny9 + nos + ny7
+ ny9 + N3y + n3g + 2n3s + 2n37 + n3g + 2n39 + nas
+ ny7 + Ny + Ny + Nes + 2ngs + 2ng7 + ngg + 2ng9
+ ngs + ng7 + ngy
N3 = ny + npq + nog + nap + naq + nag + ngy + ngq + ngg
(A2.2)

thus yielding

9 : :
ErN [(1 - ¢I)Nl¢l iy + (1= y)(1 - ¢>2))N’} =0.
1
(A2.3)
Defining
M, =N;+ N+ N3, My;=N;+2N,+ N3,
Mz = Ny + 3N, +2N; (A24)
and calculating Eq. A2.3 results in
M7 — Magp, + by (M3, — 2M b7 — No) + Ny = 0.
(A2.5)
In the case / = 2 it follows by the same procedure
Ki¢3 — Kapy + ¢ (Kspy —2K1¢5 — Lo) + Lo =0 (A2.6)
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with

Ly = nys + nyy + nog + nas + na7 + nag + nsy + nsq + 2nss
+ 2ns7 + nsg + 2ns9 + nyy + n9g + 2ngs + 2ng7 + ngg
+ 2n79 + ngs + ng7 + Ny + oy + oy + 2ngs + 2ny7
+ ngg + 2ngg

Ly = ny1 + np3 + no + na1 + naz + nag + 2ns1 + nsy + 2ns;
+ nsq + 2ns6 + nsg + 2ng; + n72 + 2n73 + g + 2nge
+ n7g + ng1 + ng3 + nge + 2191 + ngy + 2193 + Noa
+ 2n96 + nog

Ly = N;

Ki =L+ L + L3,

Ky =L;+3L, +2Ls.

Ky =L +2L, + L3,
(A2.7)

Combining Egs. A2.5 and A2.6 gives polynomials of order 5 in ¢
resp. ¢,, which can be solved numerically.

When the rate constants (and therefore the transition proba-
bilities) are small with respect to the sampling frequency of the
data, the ¢; are near to 0. Then the following applies

Ny K N{,N3, Ny < M{,M>),M5, M~ M=~ Ms
L< L, Ly, L)< K, ,K, Ky, K =K,=Kj

M T < My, Mt < Magh,

2Ki¢5 < Kady,  Kidy < Koy (A2.8)

and yields an approximation of Eqs. A2.5 and A2.6:
— Mgy + ¢ (M3p; — N2) + N2 =0

— Koy + &1 (Kspy — Lo) + Lo = 0. (A2.9)
(}52 is the solution of a quadratic equation:

Ci¢3+ Cagpy + C3 =0 (A2.10)
with

C, = MK, — N>K3

Cy = NoLy — M3Lo + N2Ks — MK,

Cy = —N>L, + My Ly (A2.11)
and ¢, can be computed by

¢1 = (—Lo + Kahy) /(K3hy — L) (A2.12)

In the case of small rate constants, Ny to N3 and L;, L, can be
approximated by

Ny = 2n11 +nio + 2n13 + noy + 2n31 + 2n33 + n3g
+ 2n36 + 143 + 2n63 + 2ne6 + nes + g6
No = nip + nps + n3a + na7 + neg + ngg
N3 = nyy + oy + Nap + Naa + nag + nga + ngg
Ly = nps + ng7 + nsy + 2nss + 2ns7 + nyg + 2n75 + 2ny;
+ 2n79 + ngg + 2197 + ngg + 2ngg
Ly = nyy + ng3 + nsy + nyg + nge + nog. (A2.13)

&53 and &54 can be calculated analogously.
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Appendix 3

CALCULATION OF THE PROBABILITIES OF FALSE JuMPS

As explained above (see Application to Noisy Data), the failure of
the test in the presence of high noise originates from incorrectly
identified transitions n,3 and n3,. They result mainly from ““false
jumps”: A jump takes place and is detected, but due to the su-
perimposed noise the target state of the jump is falsely identified.
Usually, if the dwell-time of the new state is long enough, the
detector can realize the error and reports a second jump shortly
after the false jump, now to the correct target state. This is illus-
trated by the following example: The Markov chain produces a
transition from state 1 to state 3. The detector first registers a
transition from state 1 to state 2 and then a transition from state 2
to state 3. Thus, these false transitions increase n,3. The following
calculations give an estimation of the expected number of the
falsely identified jumps 7,3 and their standard deviation. In the case
of n3; similar considerations apply. The calculations consist of the
expected number of falsely identified jumps n;, and are based on
the following recursive calculation of the test values /., of two
parallel operating Sublevel-Hinkley detectors (Draber & Schultze,
1994) aiming at the current levels i, of state 2 and i3 of state 3:

—p),0) k=23 (A3.1)

with 7 being the sampling time, p, and p3 the half jump amplitudes
between the current level i; of state 1 and the current levels i, or i3,
respectively, and e, = i(¢)—i; being the difference between the
sampled current value i(¢) and i; of state 1. If the test value /i, of
the Hinkley detector for state k crosses a preset threshold e, a jump
to this state is detected. The starting value for /iy, after a jump is
detected, is zero. Because of the parabolic dependence on p, in Eq.
A3.1, the test value aiming at the correct current level usually
crosses the threshold first (Draber & Schultze, 1994). € is adjusted
to the magnitude of the noise:

iy = max(hy -1 + pi(e

€= 8% (A3.2)

After a jump from state 1 to state 3 at # = 0 and in the absence of a
second jump the test values /i, increase monotonously with high
probability so that one gets recursively

/’lk, = Dk <Z ey — k) . (A33)
Replacing Z:n:o e, for hy, t leads to
h3 =I£h2,; + (14 Dp3(p2 — p3). (A3.4)

In the case of white noise (with standard deviation o), /i, is nor-
mally distributed with mean (7 + 1)i3 p; — (¢ + 1)p? and standard
deviation (¢ + l)p,%o'2 (Eq. A3.3).
Two different cases have to be considered that result in detecting a
jump from 1 to 2 instead of from 1 to 3:

A: hy, crosses the threshold € earlier than hs,.

B: hy, and h3, cross € at the same time, but /iy, > hs,.

If the next jump takes place at time #,, the probability for case A
is (P5 is the probability given a jump from 1 to 3)

P, :=P3(min{r € {0,...
< min{z € {0,...

,l()} : hzﬁ, > 6}
,l()} : /’13‘, > 6})

o
= ZP3(h2,n > G,hg‘n_l < 6,h3>,, < 6).
n=0

(A3.5)
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Introducing Egs. A3.1 and A3.4 leads to

)
Py = Z P3 (/12’,,71 + pa(en
n=0

_pZ) > €, h2«,n—l <€

(A3.6)

;’—zhzﬁn + (n+ Dps(ps — p3) < ©).

hy,, 1s replaced by hy, - 1 (Eq. A3.1):

1)
Py = Z P3(/12’,,71 + pa(en
n=0

_pZ) > €, h2«,n—l <€,

—p2)+(m+1)ps(p2 —p3) <e)

)
=Y Ps(hp <,
n=0

€ Iy
P3 P2
€ — h2 n—1

> —4 .
P2 P

]2 h2,n71 + P3 (en
P2

—(n+1)(p2 — p3) +p2 > en
(A3.7)

Let f; be the density of e, and f, the density of /,, _ ;. Since
they are densities of normal distributions, the probability that /,,
crosses first the threshold ¢ can be thus obtained by numerical
integration:

Pi=> [ /) ]yzfl (x)a(0)dx dy

n=0

(A3.8)

with y; =%+ py and yy = = — - — (n+ 1)(p2 — p3)+ p2.

Ppcan be evaluated in a similar way:

min(e,2(e—np3(pa—p3))

PB:XZZ/ »
n=|

with  y3 = max(5* +po,px( e(n+
ya=(n+1)ps *f+172

The theoretical expectation and standard deviation of falsely
identified transitions 1} from 2 to 3 originating in a jump from 1 to
3 can be calculated from P, and Pg.

/ AAG)dx dy  (A39)

Dps(p2 —p3)) =3 +p2)  and

E(n}) = ni3(P4 + Pp) and
a(nh) = \/ni3(P4+ Pp)(1 — (P4 + Pp)).

(A3.10)
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